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SMALL-TIME BEHAVIOR OF UNSTEADY CAVITY FLOWS

by

D. P. Wang and T. Yao-tsu Wu

California Institute of Technology

A perturbation theory is applied to investigate the small-time behavior of

unsteady cavity flows in which the time-dependent part of the flow may be

taken as a small-time expansion superimposed on an established steady

cavity flow of an ideal fluid. One purpose of this paper is to study the

effect of the initial cavity size on the resulting flow due to a given dis-

turbance. Various existing steady cavity-flow models have been employed

for this purpose to evaluate the initial reaction of a cavitated body in an

unsteady motion. Furthermore, a physical model is proposed here to

give a proper representation of the mechanism by which the cavity volume

may be changed with time; the initial hydrodynamic force resulting from

such change is calculated based on this model.

1. Introduction

It has been noted that the free surface flow problems become very

difficult to treat exactly when the flow is time-dependent. Some of the

principal difficulties involved in this class of problems can be envisaged

as follows. First of all, the problem is generally nonlinear because the

boundary conditions on the unsteady free surface are nonlinear and be-

cause the location of the free boundary is not known I priori. Secondly,

unlike the case of steady flows with free boundary, the surface of-constant

pressure is no longer a surface of constant speed. Consequently, the

powerful hodograph method widely used in the steady free boundary

problems loses much of its potential and usefulness for possible
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applications inthis case. Probably for this reason, only a relatively small

number of unsteady free surface problems (of racher special cases) have

been treated. Some comprehensive survey and review of the recent

literatures are available elsewhere (see Gilbarg[ I], Birkoff and

Zarantonello[ 2] and[ 3] ), and hence will not be recited here.

It is worth noting that there is an essential difference between the

unsteady flows with and without a free surface. In the determination of

the velocity field of an unsteady flow without a free surface (which includes

the vortex sheet shed from an oscillating wing), the time appears only as

a parameter. The kinematics of the unsteady motion will therefore not

differ basically from its corresponding steady flow. On the other hand,

for an unsteady flow with a free surface, the time variation affects the

flow explicitly through the boundary conditions on the free surface. There-

fore, the flow will depend on all its previous time history, which further

complicates the detailed analysis and calculation. However, when an

established steady cavitating flow (regarded as the basic flow) is given a

sudden acceleration, the problem of the small-time behavior of the flow

is relatively simple because there will be only a short history of any time-

varying disturbance to be considered in this period. It is therefore clear

that some difficult problems in unsteady cavity flows can be best handled

in the small-time limit since, for one reason, the analysis is relatively

straightforward. We hope that such an investigation may cast light on

some of the basic features of the unsteady cavity flow, especially the be-

havior of the large frequency limit in the case of oscillating cavity flows.

The impact problem of the Kirchhoff-Helmholtz flow with a flat

plate normal to the stream has been treated by Gurevich[4]. Attempt is

made here to generalize the consideration to include the effects of (1) the

cavitation number (the cavity size being finite), (2) the angle of attack,

and (3) the time variation of the net cavity volume.

The existing mathematical theories for steady cavity flows are

seen to be based on some proposed physical models. It is well known that

in a positive range of the cavitation number up to moderate values of order

unity the agreement between the existing models for steady flows may be
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considered very close[5]. No comparison, however, has ever been made

(to the authors' knowledge) between these existing models for the case of

unsteady cavity flows. In this paper, the re-entrant jet model,

Riabouchinsky's model, and a modified wake model are applied to in-

vestigate the small-time behavior of the unsteady cavity flow, including

the effects of the cavitation number and the incidence angle of the flow.

The problem related to the possibility for the volume of a finite or

infinite cavity to vary with time deserves a particular note. For cavity

flows of an incompressible liquid surrounding a vapor cavity, it is

obvious that, when the cavity volume changes, the conservation of mass

and conservation of volume of the entire flow becomes incompatible be-

cause of the difference in the densities of these two phases. Consequently,

any variation of the cavity volume must come from a source distribution

in the flow with its net strength depending on the time-rate of change of

the cavity volume. It has been proposed by one of the authors[6Jhat as a

physical model, the change in the cavity volume can be affected by a

source or sink located at the point of infinity. A direct consequence of

this source with a time-varying strength in a two-dimensional flow of

infinite extent is that it generates a pressure field which is logarithmical-

ly singular at infinite distances. To create such a flow it requires an

infinite amount of energy. Probably for this reason the treatment of the

unsteady partial cavity flow by Timman[ 7], the work of Geurst[8J, of

Parkin[9], and of Wu[ 6], have been carried out under the assumption of

fixed cavity volume and no source at infinity. In reality, however, the

flow is usually finite in extent and never two-dimensional in the large; the

pressure singularity at infinity, being outside the flow region, may there-

fore be regarded as a simplifying idealization, much the same as the

representation of a solid body by a distribution of singularities. This

physical model for permitting the cavity volume to change has been

applied to various cases together with other cavity flow models. It is

expected that this variable-cavity-volume model will give a good representa-

tion of the flow field near the body-cavity system. The validity of this

model of course will have to be verified, directly or indirectly, by future

experimental observations.
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2. General Formulation

To fix idea, we suppose that for the time t < 0, a steady plane

flow of an incompressible, inviscis fluid past a solid body with a cavity

formation has been established, the solution of which is assumed to be

given, or can be determined with the aid of some cavity flow models.

Suppose now the solid body to which the cavity is attached is given for

t > 0 a sudden accelerated motion; the problem is to evaluate the small-

time behavior of the resultant unsteady cavity flow.

In general, the motion of the rigid boundary may consist of a

translation and a rotation. Let (xo, yo) be a point on the rigid surface

So(xo, yo) = 0 in the basic steady flow, and let it be displaced in time t

to the position (x, y) with translational velocity (V (t), V (t) ) and

angular velocity wo(t). In terms of the complex variable z = x + iy and

V(t) = V + i V , the motion of z may be writtenI 2

dz/dt = V(t) + i w(t) z (1)

We shall assume that, for small positive t, V and w may be expanded

in power series of t, starting with the linear term so that

dz/dt = c t + c ta +i (Wt + W t2 ) Z + 0 (t 3 ) (2)1 2 i a

where cn = an + ib , an, bn and w n being real constants. It then

follows that for small t,

3 4S WIzo) t+ (cI + I + O(t4) (3) a

The displaced surface will be denoted by S(x, y, t) = 0. In fact, we have

So(xo(X,y,t) , Yo(xy,t) ) = S(x,y,t) (4)
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regarding (1) as to provide the canonical transformation x = x (x,y,t),

yo= Yoxyt).

From the nature of the body motion it also follows that the com-

plex velocity potential of the flow

f z( t) -= ((x,y,t) + i4(x,y,t) ( (5)

will assume for small t the expansion

f(z,t) = fo(Z) + t f (z) + I tf(z)+.... , (6)

where f n(z) = pn(X'y) + l'4n(xy), n = 0, 1, 2. , and fo(z) is the

complex velocity potential of the basic flow. The function 99 (x, y) may
be called the initial acceleration potential. While 4o = const. gives the
streamlines of the basic flow, the harmonic functions Fn for n >1,
being the complex conjugate of 9pn, are introduced solely to make f n(z)
analytic functions of z. The velocity components are, as usual

u(x, y, t) = 8q4/ex , v(x, y,t) -= of/By . (7a)

We shall introduce the complex velocity w = u - iv, and w n dfn/dz,

then from (6)

w(z,t) = wo(Z) + tw (z) + 1 tNw Z) + (7b)

Similarly the pressure p(x,y,t) may be assumed to possess the

expansion

p(x,y,t) = Po(X,y) + pI(x,y) + tpa(x,y) + tp 3(x,y) +.... , (8)

where p0 denotes the pressure field of the basic flow, p the impulsive
pressure due to the sudden acceleration. Then from the Bernoulli equation,

p/p+ 89/1t + 1 M02 p /p+ I us

7 CO 72(9)



where p and U are the pressure and speed of the basic flow at infinity,

we obtain, by equating the coefficients of same powers of t, the following
relations:

P/p + (V•P)Z=p/P + 4 UZ
0 ~0 g

pip / -P 0 (10)

p /p = - 92- (V o).(Vqi) , and soon.

The boundary conditions of the problem are as follows:

(i) At the solid surface, the normal component of the flow velocity

relative to the moving boundary must vanish. An alternative way of

stating this condition-is that the fluid particles originally on S(x,y,t) = 0,

at small time interval apart, will remain on it. That is

DS- =S + 84 as + 8 a = 0 on S(x,y,t) = 0

which becomes, upon using (4),

a 0 o f a + a s: 0 84P OqO + 8 y o

on S(x,y,t) = 0. Here the functions xo(xy,t) and yo(Xy,t) can be

written down immediately from (3) by interchanging z and zoo and by

changing the signs of ant bn and wn, as can readily be seen from (3).

Equation (11) is in a form convenient for manipulation since OS /8x0 and

aso /OY already correspond to the components of the normal to the initial
surface S0 (x0 9YO) = 0. Substituting (3) and (6) in (11), expanding the

various quantities about (xoyoy) and t = 0, and equating the coefficients

of different powers of t, we obtain the conditions that on S o(xoy) = 0,

a0/o8no = 0 , (12a)



8•O / 8On =%no (a]wjy o ) + n (bI+ w xo) (I 2b)

-~ 
2n (a W 0 + 2n0 (b +4 - n -

0 1 0 2 0 J
820Z8' OZ r0 100 '" I- w yn 9(a,0 +°n -(b I + wzx 0) W O + n o by

0 0J

(I2c)

where no = (no n ) is the unit outward normal to the surface
i a

So(xo Iy) = 0.

(ii) There are two boundary conditions at the free surface of the

cavity. Suppose the free surface may be expressed as

F(x,y,t) = y - h(x,t) = 0 ,

then the kinematic condition that the fluid particles on the free surface

will remain on it requires

v = Oh/8t +u Oh/Ox on y =h(x,t) (13)

We assume that for small t, h(x,t) may be expanded as

h(x,t) = ho(x) + th (x) + I tah (X) + 0(t 3) (14)

where y = ho (x) denotes the cavity boundary of the basic flow on which

dh /dx = v (x,h )/Uo(x,ho) (15)

Substituting (7) and (14) in (13), and expanding un and vn on y=h(x,t)

about y =ho(x) and t = 0, we obtain

h, V(x,h) -U (x,h) dh/dx =0
hz 0 0 0 0 0

h =v (x,h ) - u(x, h )dh /dx .(6

a a 0 1 0 0
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Since h 1 0, the free surface will not be displaced in the time of orderI

t, as should be expected.

In the basic flow, the cavity boundary is a surface of constant

pressure, and hence also one of constant velocity, say

PO =PC0 1 Vio1 =qc on y =ho(x) , (17)

so that by the Bernoulli equation (10),

qc= U (l + a)l (18a)

where a is the cavitation number of the basic flow, defined as

=(P / PUZ (18b)

We shall assume that the pressure in the cavity of the unsteady flow will

be maintained at the same constant value p c' that is,

p(x,y,t) =Pc on y =h(x,t) (19)

By expanding the left side of this dynamic condition about y = h0 (x) and

t = 0, using (8), (14) and (16), the following conditions result

Pi =Pz = 0 on y =h 0 (X) (20)

Hence from (10),

P 0 on y = h (x) (21a)

9 - (Vqo).(V -) on y =ho(X)

Upon differentiating (21a) along y = h (x) and using (15), it is readily

seen that (V 1 o).(V ) = 0, and hence

P =0 on y =ho0(X) (Zlb)

From (21a) and (21b) it therefore follows that

P ( (VV (V9) 0 on y =h(x) (22)

0 0 0
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which asserts that the perturbation velocity is normal to the original cavity

boundary up to the time of order t

(iii) At the point of infinity we require the perturbation velocity to

vanish,

IV n I-- 0 as Iz-. c, for n = 1,2," .(Z 3)

If, in addition to the sudden acceleration of the solid body and the assump-

tion of the constancy of the cavity pressure, a certain amount of fluid is

removed at infinity with a source strength Q t + Qz + so that the

cavity volume may be changed arbitrarily, then, aside from condition (23),
we must impose additional conditions at infinity as

Im . Wn(z)dz =Qn P n=1,2, ... , (24)

where r is a contour around the point of infinity. However, we impose

no boundedness condition on p at infinity since, if such Qn can be

arbitrarily chosen, Pn(n >. 1) will be logarithmically singular at infinity.

It will be seen later that, when the cavity is taken to be infinitely long

(Helmholtz flow, corresponding to the cavitation number a = 0), the

solution exists only when Qn = 0. Consequently the effect of change in
cavity volume can be sought only in the case of finite cavities. However,

the limit of the hydrodynamic forces in such cases as the cavity becomes

infinitely long, with Q held fixed, is seen to exist.

On the other hand, from Kelvin's theorem on the conservation of

circulation, the circulation around the point of infinity cannot be changed

in the unsteady motion for t < wo. By combining this condition with (24),

we may write

Sn Wn(z)dz iQn n =1,2,3... (25)

This completes our formulation of the small-time perturbation theory.
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3. Solution of the Perturbed Flow.

For the moment we assume that the solution of the basic steady

flow is given. We note that in the basic flow the entire boundary of the

body-cavity system belongs to a streamline, the form of which is known.

Therefore, by the general theory of conformal mapping, it is always

possible to find an analytic function

(Z)= (x,y) + ivl(x,y) (26)

such that the entire flow region in the z-plare is mapped by (26) into the

upper half 4-plane with the entire boundary of the body-cavity system

mapped onto the entire 4-axis. For simplicity, we shall make the part

j• j < 1 of the real 4-axis correspond to the wetted solid surface and the

part It I > 1 to the cavity boundary.

After the transformation to the ý-plane the boundary value problem

formulated in the last section can be stated as a Hilbert problem, as will

be shown below, the solution of which is readily attained. It is noted from

the last section that the problems of different orders in the perturbation

are expressed in a similar form. That is, the normal velocities 89n/On°

are given at the initial solid surface and the potentials 9 n are prescribed

at the unperturbed cavity boundary. It is therefore sufficient to treat one

as the typical caae. To save writing we shall denote fn = qpn + i4'n by

F =0 + i 10.

It is convenient to introduce the analytic function

G(ý) = dF/dý = (dF/dz) (dz/dý) (27)

which is defined for Im 4 > 0. Then on the solid surface, 'I = 0+, ItJ < I,

ImG =- gI(ý) say, (28)

which is known, by (12) and (26). Furthermore, on the cavity boundary,
i1+ II>1,
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RE G = a8/84 = ga () say, (29)

which is also known, by (21). In particular, g. = 0 for • and qP,

Finally, (25) becomes

C'dF dz= G(4)dt=iQ (30)

where r, is the image of r in the •rplane, the subscript n of Q is

dropped to show a typical case.

It is possible to transform the above boundary value problems of

a mixed type into a Hilbert problem by extending the unknown function

G(Q) to a sectionally analytic function, defined on the whole C-plane

(excluding the real t-axis if necessary). Since 9 and higher terms will

not be treated explicitly here, we shall demonstrate the method by taking g

of (29) to be zero; the general case of gz / 0 can be carried out

similarly. First, the function G(t) may be continued into the lower

half 4-plane by

G(C) = - . (31)

For the case g. = 0, G(t) is the analytical continuation of G(Q) through

the interval 1| > 1. In the following, G-+(4) will be used to denote the

limiting value of G(;) as 1 + 0. From (28), (29) and (31) it then

follows that

G + +G = 2i Im G+ 2i g (4) for jI I< 1

G+- G" = 2 R G+= 0 for > I . (3Z)

The above Hilbert problem is well-known [10], its general solution can
be written

G Wl 91 dt + W for 1 > 0

(33)
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where the function (C'! - l)t is defined on the entire 4-plane with the

branch so chosen that (Ca I)*•- t as 14 1-ac, and P(Q) is an

arbitrary Laurent's series with real coefficients. The last term in (33) is

the general solution to the homogeneous problem (with g, = 0 also). The

real coefficients of P(Q), and hence G(4), can be determined uniquely,

when (30) is satisfied and the condition that the pressure is integrable

over the rigid boundary is observed.

In the following the above perturbation theory will be carried out

for several basic steady cavity flows.

4. Inclined Lamina in Kirchhoff Flow

As a simple example we consider the basic flow to be that past a

flat plate held at an angle a, with a cavity formation of infinite length.

The solution of this problem is known [ 11 ], which we simply cite below

for the subsequent use. The coordinate system in the z-plane and its

conformal mapping planes are shown in figure 1. For simplicity the

free stream velocity U and the plate length 1, are normalized to unity.

The solution w° = w 0 (zo) can be written parametrically as

0w T -i ,u (M4a)

z° 0 -K S1( J7- + 1) (4 + sec a)-' d4

K _II_+_F cotu a ____ _V 2 tanUt3 1sec"= ({+seca)2  n-& (a+sec-) +2cttntan a

where +e(34b)

K = 2tan3 asin&/(4+wsina) . (34c)

The entire flow region is mapped by (34) into the upper half ;-plane with the

corresponding boundary as prescribed in the last section

(i.e. on ii= 0 , i • 1< I corresponds to the plate and I• >I to the
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cavity surface). The coefficient of the normal force N of the basic

flow is

CN N/( I pUZ 1) = 2ff sina/(4 + wr sina) . (35)
N 0 7

(a) The first order solution

The unit normal to the plate is now no = ( 0, -1). We suppose the

rotational motion is referred to the leading edge of the plate. Then the

boundary conditions (1 2b), (21a) and (23) become

(b+wx 0 ) on 0, J I< 1 ,(36a)

I,= 0 and hence 8O(P/89 = 0 on l= 0 , 1 ]>1.(36b)

JV I-'- 0 as - seca (36c)

It is noted that a , the first term of the x-component of acceleration,

drops out from (36a),implying that the acceleration of the plate parallel to

itself has no effect on the flow up to time of order t. Furthermore,(25)

cannot be satisfied unless all the Qn = 0. This can be seen as follows.

If Qn • 0, then (25) implies that wn Qn/2rz + o(IzI'1), and hence

92n -(Qn /2r) log Iz I, as Iz I - oc. It follows that Pn will be logarith-

mically singular at z = oc, which contradicts the conditions of pn' such

as (20), on the undisturbed free boundary y = h0 (x) which extends to in-

finity. This indicates that the Kirchhoff-Helniholtz model with an infinite

cavity is not a realistic model for the consideration of change of cavity

volume. The problem when Qn 1 0 will be considered later when other

finite-cavity models are adopted.

By making use of (36a), (36b) and (34b), (28) and (29) become

Im I = K(b +W xo) lr-4z+l)(g+seca)-3 14 j< I

0

R1 G 0 >1,



14

where x o() is given by (34b), and K is given by (34c). Finally, by

(33), we obtain

at _ K o dt + CnL+sec a)n
To- 4 )n=-ao

(37)

where Cn are real coefficients. The Laurentz series in the last term is

expanded about L = - sec a(or z = c) for the convenience of application
of the boundary conditions at z = cc. The first term in (37) behaves like

C-2 as I c I" co and is regular everywhere except at L= - + I. Now

by using (34b),

w dfI d4 -- (•_c•) df1 (38)

K(Jl- +1) (8
From (37) and (38) we readily see that Cn = 0 except for n =

in order that w - 0 as z-'-" (or L-- - secu) and w isI I
regular as "- cc. Furthermore, with Qn = 0, as explained above,

(30) requires that

zW -- & 0 as I -1 (39)1

From (34b), we find that as 1z f--b .

K I + i tana
7 ( + Seca)?

Making use of this result, we readily deduce from (37) and (38) that (39)

is satisfied if, and only if, C C = 0 also. Therefore all the co-"1 -Z

efficients Cn vanish, thereby the first order solution given by (37) and
(38) is uniquely determined.

It may be noted that w has a singularity at the edges of the

plate, physically corresponding to a narrow spray sheet. For, with

--+ (l+E), It I < < 1. we deduce from (37) and (38) that as -+ 1,
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W i(t1+Secar)3 ( l+ \±i(b I+ wIxC)(1+ 1-42) 1dt [l+O(Is 11)]

(2e) + ' + sec a)3 +J

From the behavior of w on the free surface (E positive small) it may1

be seen that the free surface starts to move into the cavity when the

plate accelerates into the fluid (e.g. , with b < 0, w = 0), and vice1 1

versa. Furthermore, it is noted that w is of order Iz •-3A for large1

values of I z I. The net effect can be seen to be such that there will be no

net change in the cavity volume.

Since the spray sheets do not produce any singular force (unlike the

leading edge suction on a thin airfoil), the normal force acting on the

plate can be obtained by integrating the pressure along the plate so that

for small t, in view of (3),

N = P(xo,0-,t)dxO= S [Po(Xo 0 ) + p (xo0 O)+tp(x o0)] dx 0 + 0(t 2 ).
o 0

=N +N + t N + 0(tz) . (40a)o 1 2

The first term No is given by (35). Now, from (10)

N p1 (xoO)dxo p (x°, O)dx =-"P x-1 dt
so0

(40b)

By substituting the real part of (37) for 8v /84 in the above integral, the1

normal force coefficient may be expressed as

C N j/ p UZl) ( ))1)rb, ( (4 ,a)

where
Z • I Xo(4)dg ax 1 l•s 8xo(,)

FbiU) '• -I I • do, (41 b)

S-1 a-

I 1 I l'sZ IX o 2(s)I'Is (o,)-- -(s-I) do (41 c)
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the above integrals being interpreted by their Cauchy principal values.

In (41a), b and w are expressed in the physical units, and the plate

length I and free stream velocity U are restored for completeness.

The integrals in (41b) and (41c) cannot be expressed in terms of elementary

functions of a; they are integrated numerically and the results are

plotted versus a in figure 5. In particular, we have

rb (w/ 2) = 0. 8448 , (42)
1

which is the special case treated by Gurevich [4). The quantity CN
I

represents the jump in the normal force coefficient due to the accelera-

tion.

(b) The second order solution for a = i/Z, w, = b = W = 0
1 3 3

To facilitate investigation of the behavior of the second order

solution, let us choose the special case: a = ir/2 (the flat plate being held

normal to the stream) and w , b , w all vanish. Then the boundary con-1 2 2
ditions (12c), (21 ), and (23) become

8s, /yo = -b I 2aloq/8y , on -q = 0 , IC I < 1 , (43a)

z = 0 on n= 0 
, ICI >1 , (43b)

JV, I 0 as Iz 1--' (43c)

Since the component a of the acceleration parallel to the plate does not

appear in the above conditions, the flow will not be affected by it up to the

second order terms. Now, in the limit as a-- ir/2, the zeroth order

solution becomes

z = [ 2 ((-1) - ) ( 1-2 )i + coslL0]/(4 +r) (44)

and w is still given by (34a). Consequently, from (28) and (29)



17

Ou

ImrG= b olx0 I < I

RIG =0 ii=0 , j 0>l

Hence, by (33),

df b . 1 1 1 .)d1
Z -d4 (45)

in which the complementary solution is zero, as can be shown by the

same argument given previously for q7. Carrying out the integration, we

find

df b, (1-0Z)-•2,+log - -li(l-42)1}, (46a)

df 1 dfi(4+i ? (46b)

It is readily verified that w also behaves like z- / for large Iz z

The second order normal force, by (40a) and (10), can be obtained

from

N = 1 p (xo, 0) dx° = p -1 [ +u ul]- Oa0-d4

11r 8qzBx

=P S -o(0a) + U.(o) u ()o de

After substituting the various terms and evaluating the resulting integral,

we find the simple result:

N 0 (47)

For this special case we therefore have the normal force coefficient
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CN(t) CN + CN + CNt+ 0[(Ut/I)2)
0

= 0.8798 + 0.8448 (1b /U1 ) + 0 (Ut/I)2 
. (48)

1

Thus for constant acceleration, CN has, aside from the stepwise change,

the following behavior
(dCN/ dt)t=O+ 0

However, N may not vanish when b , , and w are different from2 2 1

ze ro.

The quantity m = N /b may be called the initial induced mass1 1 1

of this cavity flow, then by (48)

ml b = 0.4224 pl ' . (49)

If the flat plate had undergone an acceleration b normal to the flow1

without wake formation (a postulated Dirichlet flow), then the induced

mass would be

m°0 = Ip(1l z)z . (50a)

Thus

m /mo = 0. 5377 (50b)

This ratio is less than unity, as should be expected, since the cavitated

side of the plate, being exposed to constant pressure, has no capacity of

imparting kinetic energy to the exterior flow.

5. Re-entrant Jet Model

We proceed to consider the effect of the cavitation number a

(defined by(18))on the unsteady flow when the cavity of the basic flow is

finite in size. An additional degreee of freedom achieved in this group of

flow problems is that the cavity volume can now be changed arbitrary by

prescribing a flow source at infinity. In order that the basic steady flow
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is tractable to analysis, resort may be made to various cavity-flow models

known in literature, such as the Riabouchinsky model [12], the re-entrant

jet model [ 1 ], the wake model proposed independently by Joukowsky [1 3],

Roshko [14] and Eppler [15], and the modified wake model introduced by

Wu [16]. In each of these flow models an artifice of some sort is intro-

duced to admit a as a free parameter, and to replace the actual wake

flow of a real fluid by a simplified model within the framework of an

equivalent potential flow. It has been found that in a positive range of a

up to moderate values of order unity, the agreement between these models

may be considered very close (see Wu [5]). Furthermore, the validity

of these models in predicting the hydrodynamic forces acting on the body

has been supported by experimental observations. The purpose of the

following several sections is to make a comparison between the resultant

unsteady flows when'different models are used for the basic cavity flow,

for such a task should be of fundamental value in the study of unsteady

cavity flows.

For simplicity the basic flow is taken to be that past a flat plate

held normal to the stream of unperturbed velocity U and pressure p.,

forming a finite cavity with a prescribed cavity pressure p c (< Po0 ).

According to the re-entrant jet model, the free streamlines eventually

reverse their direction at the rear part of the cavity, forming a re-

entrant jet which disappears on another "Riemann Sheet" (see figure 2).

Due to the assumed symmetry of the flow, it suffices to consider only

the flow in the left half physical z-plane. To save writing, both the half

plate length, 1/2, and the constant speed qc (see (18) ) on the cavity

surface will be normalized to unity.

It is convenient to introduce the variable
dz11

£ d= log "• =log - =log L +10 (51)

where f is the complex potential of the basic flow, q is the flow
0

speed, and 0 the flow inclination with respect to the x-axis. The part of

the flow under consideration in the z,fo, and C2-planes is shown in figure 2.

By applying the Schwarz-Christoffel transformation, the flow region can be
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mapped conformally into the upper half 4-plane, with the point of infinity

I, front stagnation E, plate edge A, jet infinity B end the rear stag-

nation C corresponding to L = cc, 0, 1, b, and c respectively. The

required transformation is given by

df

dO BS= (53)
( -c) [( -)• b

where A, B are two coefficients. From the local behavior of 0 at

= 0 and c, we find the relations

B =- - c1 I b = clc-l)(c-1)-1 (54)
7Z c' (54

Integrating (53), and by making use of (54), we obtain

S= e=[ ((c-b)(•-l)/Ac-l).(•-b•]J +Il I[F / •t(•b)4b(•'l))]•+l '•

0 (c-b)(L-l)/#c-l)(L-bl]I I ((C-b)4b(L.-luj 1 - I J

(55)

As I -- co, dfo/dz - U = (1+4;). From this condition and (55) it

results

(+a)a= (c-l) c3/Z (1c4-3/ (56)

Finally, by integrating (55) and (52) to obtain z = z(L), the coefficient A
is determined by the plate length, giving

A = (b-l)•'2 / [K(l) - K(o)] , (57a)

where
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K(C) = (2c-b)[ be(l-) I+ (2c-Il)(4(b-&)]I'+ (c- I b)sin-IEb

3 ({Zb- I)t -b+b• [b(b" 7Z )+c(2"b)] sin" (2 -1) +(b'i)3/2(c'b) sin-' b-9

(57b)

This completes the zeroth order solution for prescribed a. In particular,

on the half plate, y = 0, -1 < x < 0 (or q= 0+, 0 < 4 < 1), we have

x(4) [K(4) -K(o)] / [K(l) - K(o) ] (58a)

d A(C4N[ (c-bill-4•)/jc- lllb-,V 1• +1 [ (b-4)/Jb(l-)]-1

(58b)

This expression is needed for the first order solution.

When a sudden acceleration of magnitude b is applied normal to1

the plate, the boundary conditions corresponding to (32) can be written

G+ +G" =-2ib dx/d4 for 0< 6 < 1 , (59a)

G+ G- = 0 for 1 < 4 < b , (59b)

G++G" =0 for -oc< < < 0 and b < < eo.

(59c)

The last condition (59c) expresses the assumption that the perturbed

flow preserves the basic flow symmetry about the y-axis, that is,

v =0 on I =0, for 4 < 0 and 4 > b. The above conditions are ex-

pressedin the form different from (32). The solution, however can be

written down directl1 by applying the same principle. It is obvious that

H(4) = (4-l)(4-b) ] defined with branch cuts from C = -oo to I and

from b to w so that H - 4 as I C"ac , 0 < argC < ir, is ahomo-

geneous solution of the present problem. Therefore the general solution

can be written



22

b 5njj(j~d f

OW(Q4))= d dg+, 1 L c j (60)

where dx/dg is given by (58b) and c are arbitrary real constants. Ton
determine cno we note first that the pressure must be finite at 4 = 0,

hence cn = 0 for n< 0. Furthermore, we note that the first term in (60)

is of order of C-2 as IC I-- 0o , which implies that the behavior of

df /dz at large distances is determined by the last term in (60). By

applying condition (30) and using the symmetry property of the flow, we

obtain co Q /2w, c = c = . . . =0, where Q is the source strength11 2 1

defined in (24).

The integral in (60) can be integrated explicitly. For the deter-

mination of hydrodynamic forces, however, only the real part of G on

the plate (where 71 = 0, 0 < g < 1) is needed. The final result is

RI G = - I l-g)(b-Cgj A IBa 1
-7 7 [K(1)-Kmo)] AI I ('I)

+ jb (4-l)[(2c-b-2)(C-l)-c(b-l)] log

Q( 1-

where

A = ir jb(c-l) + I 4-+ (bz-2b+2c) + sin- -Ib(--l)b-2c

[b = (b-2c)(.f + sin"1 '-b) -ir(2c-_)

By using (40b) and the symmetry property of the flow, the first order

normal force N is given by1 o
N =-2p x(9) {RIGldG , (62a)

where x(g) and RI G are given by (58a) and (61). The result can be

expresied in terms of nondimensional parameters as
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CN N1 / 7 pUI=( 1 ) rb U(Z.) r~ (62b)

in which the coefficients r b and r Q are functions of the cavitation
1 1

number a. Analytic evaluation of the above integral is too tedious to be

practical. The numerical computation of these coefficients has been

carried out with an IBM 7090, the final result is plotted versus a in

figures 6 and 7 to show the effect of (i) the finite cavity size and (ii) the

change in the cavity volume. From this result several salient features of

significance may be pointed out.

First, it is noted that as a- 0, the value of rb tends to
I

0. 8448, which is the limit of Kirchhoff-Helmholtz case (see equation (42)).

From small to moderately large values of a, rb increases very slowly
1

with increasing a as compared with the rate of increase of the zeroth

order drag, which increases approximately with the factor (l+a) (see,

e.g., Gilbarg [1]).

Another point of interest is that rIQ 0 rather rapidly as
1

a -- 0, this limit being independent of Q so long as 0 is finite.
1 1

This result shows that the effect on the drag force of removing fluid at
infinity is insignificant when the cavity is sufficiently long. Furthermore,

it shows that the limit of the solution as a - 0 is non-uniform with

respect to Q since the solution in the Kirchhoff case does not exist
1

unless Q = 0.I

6. Riabouchinsky's Model

The essential feature of the Rlabouchinsky model is the introduct-

ion of an appropriate image body downstream of the real body so that the

free boundaries of the cavity are connectedby this pair of solid boundaries.

Let us apply this model to consider the cavity flow past a flat plate set
normal to the stream, the flow in the physical z-plane is shown in

figure 3. Again, as in the problem stated in the previous section, the

unperturbed velocity and pressure are U and p, respectively, the



24

cavity pressure is pco corresponding to the cavitation number a. Also

the half plate length, 1/2, and the constant speed qc on the cavity will

be normalized to unity. Furthermore, due to the assumed symmetry,

only the left half z-plane of the flow need be considered.
For the present case it is convenient to denote by 4 the complex

velocity potential. We further introduce an auxili4ry complex variable

T defined by I +wo') (63)
T 7 (W 0 +W0(3

where w° = d4/dz is the hodograph plane of the basic flow. The flow
field under consideration in the z-plane and conformal mapping planes

wo, 4, 7, are shown in figure 3. By the assumed symmetry of the flow,

we may choose the potential at the front and rear stagnation points to be
S= -n and n respectively, and 4B = -im, D = m. We further define

k' and k by

k ' k = (1-k'z)- = (2a + aZ)1/(l + a) . (64)

Then, at z = c, we have

w1=-i k' T, {k1 - (65)

The upper half '-plane is mapped into the upper half 4-plane by the

Schwarz- Christoffel transformation

; = 2n F T[4k•TZ + (l-k')Z]•1 (66)

From the local conformal behavior of 7(T) at the point D, i.e.

;D= M, TD = 1, we find the relationship

m = 2nJi•/(l + k') (67)

Let us introduce another auxiliary variable o = . + i)defined by

Wo- 0 • = T = , (68)

where dcn w is the Jacobian elliptic function, delta amplitude of W, with

modulus k. In the following analysis the conventional notations (see [ 17])

for the elliptic functions and integrals willbe used without specification and the

modulus k will always be omitted to save writing. By substituting (68)

and (63) Into (66) it gives
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= n dn3 W-k' (69)-W WE i cnw

From (68) and (69) we deduce that on both the front and the image half

plates - 1 < x < 0,

x = n (k'/p - E(QA) +k'(l-k') s 0< ,<

(70)

Evaluating the above result at A = K/2, which corresponds to x -1,

we obtain

n = (71)

E - WK + k'

which completes the necessary calculation for the basic flow.

Due to the presence of the image plate, an additional assumption

is needed for this model in the study of its small time behavior. It is

given that at t a 0 a sudden acceleration b is applied on the frontI

plate directed in the positive y-direction. For small t > 0 the image

plate may be assumed to move in the y-direction with speed

v=-Pb t+0(tz) , (72)

where P is an unknown constant. To determine this unknown constant

P, we shall assume that on the image plate the jump in the drag due to

the suddenly applied acceleration is zero. The physical significance of

this assumption may be explained as follows. It has been pointed out by

Wu [5] that the image plate in the basic flow may be regarded as a

means to represent the energy dissipation in the wake flow of a real

fluid. In fact, in a frame of reference at rest with respect to the fluid at

infinity, the work done by the moving image plate is negative and

numerically equal to the work done by the real plate since the total force

on the pair of plates vanishes. This negative work done by the image

plate therefore corresponds to the mechanical energy removed from the
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system in unit time as there is no other means of dissipating energy in

potential flow. Now in the unsteady motion, it is conceivable that the

rate of dissipation in the wake (of the actual flow) cannot be affected at

small time. This implies that the initial change of momentum at the

image plate must vanish. It is this physical meaning that underlies the

above assumption. For small t > 0, the boundary condition on the part

of the 4 -axis (iq = 0+) corresponding to the image plate can be written

by using (72) as

ImnG= Pb R1( ),

where G = df /dIM. Or, by app]ying the continuation (31), we have on the
I

part of the 6 -axis corresponding to the image plate the condition

G+ +G- = 2i Pb R1 (dz . (73)

Referring to conditions (32) and (73) and using (68), the boundary

conditions of this problem are
b

G+ + G = -2i bR (dz= Zi cn IA(g for -n < 6 <- n

G+- G" = 0 for -m<g<m

+ G =2i b 1 d 2 3bl cnA4 for mn< 9 < n
0+0+- - 2i~bRI~.)= 2i •

0+ +G- =0 for -o< 4<-n , n< 4< ac

where m and n are given by (67) and (71).

Consider the function h(L) = - mZ with the branch cuts from

-ac to -m and from m to co, and h(4)-' Las ILI - *o,

0 < arg 4 < 1I. This h(,) is obviously a solution of the corresponding

homogeneous Hilbert problem and satisfies (31). Therefore, by using

(33), the required solution may be written

+ W (74)
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where P(L) = C n and cn are arbitrary real constants. Again,

since the pressure at L,= 0 should be finite and the first term in (74)
is of order of 4-2 as a , we have, by applying condition (30)
and the symmetric property of the flow, P(4) = Q /2w. By using (69),I
the variable g in (74) can be transformed into the variable it, giving

b (1l-k')n K2czd' 1 ')
G M) = i "'-I dnZI -+ j
WiJ 2m 10 dnz~i n dnp +k'

K/2 cnzpddn 21c I k'

+ 0 Pn dn1k dI
A dnZ-_ L+..' L dn+k'n

Q
+ (75)

After integrating the above expression and by using (69) we deduce
that

RI -b (1P [A IIk'( dr•A + K dnIA

1 dn]Anzl,.kj
+ 1 W*cnM~ (sin' 1' 1 ) -0/5 2~!U

rk sn~ A 1+k' sný diijAcn'jA

Irfsin1 1 d- a d +k + 1 (dn__"k__

$l C-W cn )±(1-P) B dn2 I' k

( si'li•• cn Ai - 7 z n•k' 1-k')snj~cnjA

- k' "dn 2 A-k'*log cnAf-sI !~k'(dT) 0 C , K (76a)

where the upper sign is used for the front plate, the lower sign for the
image plate, w* denotes the function which corresponds to the Cauchy
principal value of the integral representation of the function w (for the
definition, see [17]), and
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Az = 1-k', E+k'K+(1+k') (76b)

____ F '+si (1-k ']z

B l+k' wr 1-k' si- (76c)
2 zfi' L r+ IT1r

By applying (40b), (70), (76a) and (66), we obtain the normal force N 1on

the front plate as

N 2 p {b 1((+f3) I + (l-f)I ]+Q i 1 3 (77)

and the normal force D y(in the positive y-direction) on the image plate

as

D' = 2p {b 1((+p)I G-(lP)I ]+Q I1 (78)
Y1 1 2 3

where

(-k') /2 x Sgr) ! cr {(I+k')f Tk KA+ ný

+ (dnI.L-k') 1 2 cnI r* sin- I_

k 13 .. L.L 1-u(in1 1 ,n' )J d , (79a)
dn 2 g~cnzj.L TIi !+ýk' cn~uJJJ

B1 dn2D YJ2 +k' 1 (dnzA.-k')z

1Tfr So JA t B n snJAcnJL + 72lk)d 2 ~

-log cDqt+ Tkr4L 1 dIA ,(79b)

l -kz 5 K/2 X(gL) sn~nAdA~ (790)
0
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and x(JA) is given by (70).

Now we apply the condition that on the image plate the change in
the drag due to the applied acceleration is zero, giving

2pb[ (I+P)I - (0-P) 12] =0

or
I -I

p . (80)
I +

Substituting (80) into (77), we obtain the drag on the front plate as

N = 4 p [ -b 12 1 1 (81)1 [IFT 7
1231

This result can also be expressed in the following non-dimensional form:

CN N/ -zPU21)=~~.~ r.(L)F (8 2a)
N 1 1' ) IU

where
II

rb Q4 r -2 (82b)
1 1 2 1

The integrals I , I and I are computed numerically with an IBM 70901 2 3

and the final result of rFb and rQ are shown in figures 6 and 7 as ab Ql

comparison with the results of other flow models. It is further noted that

as o - 0, F~, reduces to (42) of the Kirchhoff case and r -' 0.rb Q1 1

7. A Wake Model for an Oblique Plate with a Finite Cavit,

Thus far we have considered the accelerating motion of an inclined

plate in Kirchhoff flow, and of the finite-cavity flow past a plate broad-

wise to the stream. Application of either the re-entrant jet model or

the Riabouchinsky model to an oblique plate with a finite cavity formation

leads to very complicated analyses. The task is considerably simplified,

however, if we adopt a modified wake model recently proposed by Wu[ 16]
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to describe the basic steady flow. The purpose of this section is to

determine the effect of acceleration on the hydrodynamic forces with the

cavitation number C and the angle of attack a as two free parameters.

The basic flow is taken to be a uniform stream of infinite extent

impinging on a flat plate at an incidence angle a, to which a finite cavity

is attached. According to this modified wake model, the incoming

stagnation streamline branches off the plate at the leading edge A and

the trailing edge B, forming two free streamlines ACI and BC'I which

are assumed to become asymptotically parallel to the main flow at down-

stream infinity (see figure 4). The pressure on the parts AC and BC'

of the free streamlines is assumed to take the constant cavity pressure

Pc' and the space within the closed curve ACC'BA is regarded to

represent approximately the cavity. The space in between the free

streamlines CI and C'I represents a crude model of the dissipating

wake, along its boundary the uniform stream conditions are eventually

restored at downstream infinity. The flow outside this infinite wake strip

is assumed to be irrotational. The locations of the points C and C' are

determined with two assumptions; the first is that both the velocity

potential and the flow inclination at C and C' are equal, and the second

assumption is the so-called "hodograph- slit condition" that the free

streamlines CI and C'I form a slit of undetermined shape in the hodo-

graph plane. With these two. additional assumptions the whole flow field

outside the wake is then completely determined. For the convenience of

subsequent application, the solution of the basic flow is reproduced briefly

in the following. The plate length I and the constant speed qC on AC

and BCV are again normalized to unity.

The flow in the physical z-plane, the complex potential f 0-plane,

and the hodograph v6 -plane are shown in figure 4. The subscript of w°

will be omitted for simplicity. We further introduce the parametric

4-plane defined by

4 1 (w+w'-) (83a)

7I
I
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or

ow - (83b)

in which the function (4'- 1)2 is defined with a branch cut made between

the points I =-1 and 1 so that ( 1)2 as Ij-'oo- . Atthe

point of infinity, the complex velocity takes the value

w =W =Ue , U =(I +a)- 2  (84)

The corresponding value of 4, is

I = (U-Ieia + Ue-ia) (85)

Since Im f0 = 0 on the entire real 4,-axis, the complex potential fj;)

can be continued analytically into the lower-half C-plane by

fo(t) =I, M (86)

Now from the asymptotic behavior of the streamlines qo 0 const. near
the point C = C, it is evident that f must have there a simple pole.

Furthermore, from the local conformal behavior of f0 at f0 = 0, it is

obvious that f0 = O(C" 7) as C c " . Therefore the solution must be

of the form

f A 1 (87a)

o ý' (4_ d)(aT0)0
where A is a real constant. Or, expressing in terms of w by (83),

f = Aw2  (87b)
0 (w-W)(w-W)(w-W_ )(w-W -1)

The z-plane is determined by integration of dz/df = l/w, giving
0f (w)

+a =- +iB (lo (w-W) Wlog(w
w• ,

W1W log (w W)-Wlog (w- .4 (88a)
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where the constant B is related to A by

A 2( - U) sin ( + U)z - (2coso)• . (88b)

Finally, the constant A is determined by the plate length as

A [ r+ U)? -(2 cos&)2j]/K ,(89a)

K = 2 (UI+U)2+(ZCos212 + w(U'I+U) + (U'1 +U)z-(2 cos a)z tan" (U' -U

(U-1 +U) 2 -(2 cos a)z Z sina (U-I.U) sin a

(89b)

For the unsteady motion we shall confine ourselves to the simple

case of constant acceleration so that for any point z of the plate,

dz/dt = (a + ib )t (90)

Then the boundary conditions of this problem (see equation 32) become

G+ +G" =- Z2 b R1 (dz/d,) for jI j > I
(91)

G+- G" =0 for I j<I

where G = df /d;. In the first condition, dz/d; = w 1 df 0 /dt can be1 0

deduced from (83) and (87).

Similar to the general solution of the problem with the boundary

conditions given in (32), the general solution of the above boundary value

problem, stated in (91), can be written

G - ("1) .dx/dt) dt +(;z1 P(;)G()= --b iis•.--; $i}(1 00 d- ")'

(92)

where the function (42 .i)1 is defined in the entire 4-plane with branch

cuts from -oo to -1 and from I to wc along the 4-axis so that

(W, . l)½_.. , as 141-" co, for 0 <arg < w (note that the branch cut
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for the function (42 - i)i for this perturbation part is different from that

for the basic problem as described after (83b)). The arbitrary function

P(4) is real on the real 4-axis, and hence can be expanded into the

Laurent's series

0C
PlW I [Cnl4•L) n + Cn(_..1 )n ]

n= -oc

Since z -(4-4 )- as jz j - or, it is necessary to have cn = 0 for
n :5 -2 in order that the perturbation velocity w vanishes at infinity.

1

Furthermore, we must impose c n = 0 for n > 0 if we require the

pressure at 141 = cc to be finite. Finally, application of (30) yields

P(W c- c(4-,P +7- ) (9 3a). C I

c=- " (4V2 - 1) -.- _- (W--W) , (93b)

where use has been made of (84) and (85).

Transforming the variable ; in the above solution into w by (83)

we obtain

G = 2 g(w,u)du- ' I-Wz + jir(1-wz) Y I i'(1 -wz) I(w "-W )(wW - 1 (w-W ')(wWW -

(94a)

where

1 df 1-uz
g(w,u)- u - (u-w)(uw-1) (94b)

In particular, on the rigid plate, -1 <w <1, RIG = 84 /84, and

Sw( b(P. g(w, u)du - -W)+ (w-Wi)
2 b(l -ww2 ) - 1 u Y (w-W)(WW-l)}

(95)
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where (P. V.) denotes the Cauchy principal value of the integral.

The normal force N acting on the plate due to the acceleration1
is given by Sa89l

N, = p x(w) a 8•P wdw (96)
or 1

where 89 /8O is given by (95), and 84/8w can be obtained from (83).

As in the previous cases, we write

C NJ) r1 r (97)

then, from (96),

b= •( (P.V.) x(w)dw g(w,u)du , (98)

=Q =- 1 x(w)[ 1-W? + I-W)WZ dw (99) SI (w -W)(-wW- 77 +(-)(W-1

These integrals have been computed numerically with an IBM 7090, the

final result of r b and rQ is shown in figures 8 and.9 for

a=900, 75° and 450. The result of the special case a= in/ 2 is also

compared with the other flow models in figures 6 and 7. For the special case

a = W/2, we deduce from (98) the following expression for small a

2 4
rb = 0.8448 [ 1 + 0.067a (1-a) + (a .)J (100)

which is the special case already noted by Wu [6].
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8. Conclusion

In the foregoing sections we have treated the accelerating motion

of an inclined plate in Kirchhoff flow and in the finite-cavity flow, and

that of a pure-drag plate in Riabouchinsky flow and in the re-entrant jet

flow. From these results we make conclusions by pointing out the follow-

ing features of interest.

(i) Effect of the cavitation number a - For 0 < a < 1, the

force coefficient r1b due to the normal acceleration evaluated by using

three different cavity-flow models is nearly identical, tending to 0. 8448,

the Kirchhoff-Helmholtz limit, as a - 0, and being very insensitive to

a in this range. As a increases further from 1, 1rb increases very
1

slowly compared with the rate of increase of the steady state drag co-

efficient, which has the factor (1 + a) approximately. For a fixed a

in this region, the value of r b by the wake model is higher than that of
1

the Riabouchinsky model, which is in turn higher than that of the re-

entrant jet model. This result indicates that in all practical ranges of a,

it is unimportant to consider the effect of a for the small-time limit or

the large frequency limit.

(ii) Effect of incidence a - For moderate and large a, the

force coefficient r b increases faster with increasing a, the smaller
I

is the value a. This result should be expected on the physical standpoint

since there contains more liquid in the circular cylinder spanned by the

plate at smaller a. This effect of a, however, becomes insignificant

for a less than order unity.

(iii) Effect of change in cavity volume - The force coefficient

Ir due to the change in cavity volume displays wider differences be-Q
tween different flow-models. All these models show, however, that

-- 0 rather rapidly as a - 0, saying that the effect on the dragQ
force of removing fluid at infinity is insignificant when the cavity is

sufficiently long. This analysis also justifies the assumption that p is

bounded at infinity introduced in some of the previous works [4,6,7,8,9,18]
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in the case of unsteady flows with infinite cavities. As shown by this
analysis, this assumption actually turns out to be a necessary condition

for the existence of the solution in the case of a = 0.
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